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Computations of two-dimensional solutions of' the Navier-Stokes equations are 
carried out for finite-amplitude waves on steady unidirectional flow. Several cases 
are considered. The numerical method employs pseudospectral techniques in the 
streamwise direction and finite differences on a stretched grid in the transverse 
direction, with matching to asymptotic solutions when unbounded. Earlier results 
for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the 
dependence of the minimum Reynolds number on the physical constraint of constant 
flux or constant pressure gradient. Attempts to calculate waves in Couette flow by 
continuation in the velocity of a channel wall fail. The asymptotic suction boundary 
layer is shown to possess finite-amplitude waves a t  Reynolds numbers orders of 
magnitude less than the critical Reynolds number for linear instability. Waves in the 
Blasius boundary layer and unsteady Rayleigh profile are calculated by employing 
the artifice of adding a body force to cancel the spatial or temporal growth. The results 
are verified by comparison with perturbation analysis in the vicinity of the linear- 
instability critical Reynolds numbers. 

1. Introduction 
The study of finite-amplitude steady waves in a viscous fluid moving in shear flow 

at moderate to high Reynolds number is currently a subject of some interest, and 
a significant number of papers have appeared in recent years. There appear to be two 
main reasons for the studies. First, the waves provide a nice example of bifurcation 
in flows of some physical relevance, and, secondly, it  is hoped that their existence 
and stability may throw light on the mechanism of transition to turbulence, especially 
when the bifurcation is subcritical and the experimental transition occurs at 
Reynolds numbers somewhat lower than the critical Reynolds number for linear 
instability. For instance, a claim that the onset of turbulence in plane channel flows 
a t  Reynolds numbers well below the critical value for linear instability can be 
explained by the three-dimensional instability of two-dimensional quasi-equilibrium 
states has been made by Orszag & Patera (1983). It has also been suggested 
tentatively (Saffman 1983) that finite-amplitude steady waves are simple members 
of a class of vortical states whose three-dimensional features may model properties 
of fully developed turbulence and that the physical existence of turbulent flows 
depends upon the mathematical existence of the vortical states. This point of view 
appears to have independently motivated unsteady calculations by Rozhdestvensky 
& Simakin (1984), whose three-dimensional secondary flows have profiles remarkably 
like those of turbulent flow. Also, Goldshtik, Lifshits & Shtern (1983) have calculated 

t Present address: Royal Roads Military College, Victoria, B.C., Canada. 
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three-dimensional vortical states in Poiseuille flow and have found that these exist 
a t  somewhat smaller Reynolds numbers corresponding to  the onset of turbulence. 

Analytical and perturbation methods are powerful and informative techniques for 
questions of existence, but their quantitative content is limited to waves of small 
amplitude, for which the alteration of the basic uniform laminar state is small. For 
the study of waves of finite amplitude and their properties, particularly their stability 
to three-dimensional disturbances, numerical methods appear more useful, although 
they are not, of course, without their problems and uncertainties. I n  the present paper 
we intend to  describe the results of a numerical investigation of the finite-amplitude 
shear waves that can exist in a number of flows, motivated by the following reasons. 

(i) Most of the studies of viscous finite-amplitude waves have been carried out for 
plane Poiseuille channel flow. Herbert (1981) reviews this work. (A general discussion 
of such an approach was given by Noether (1921).) It is now well established that 
finite-amplitude two-dimensional steady waves exist in plane Poiseuille flow for 
Reynolds numbers greater than a minimum which is about half the value for linear 
instability. However, the published calculations on steady states in plane Poiscuille 
flow employ almost entirely a Galerkin-type method with only two modes in the 
streamwise direction, the exception being that of Herbert (1978), who checked in some 
cases with three and four modes. The justification for this is that the contribution 
to the energy from the second mode is very small. It was therefore thought desirable 
to check the results by a different method that allows easily (although not necessarily 
cheaply) the inclusion of more modes. The results do not appear to be significantly 
different, but more detail is obtained about the minimum Reynolds number for 
finite-amplitude waves to exist. It also seemed worth investigating the fact that the 
minimum Reynolds number based on flow rate may differ somewhat from that based 
on average pressure gradient. 

(ii) There is controversy over the existence of finite-amplitude waves for Couette 
flow, since this flow is stable for infinitesimal disturbances, and the existence of 
finite-amplitude waves implies a bifurcation from infinity. We hoped to  carry out  and 
report on a systematic search for such waves and examine the properties of finite- 
amplitude waves in Poiseuilldouette flow. It is relevant that recently Smith & 
Bodonyi (1982) demonstrated analytically a bifurcation from infinity in Poiseuille 
flow through a circular pipe, which also has no neutrally stable finite Reynolds 
number. The discovery of finite-amplitude waves in plane Couette flow would suggest 
as a good possibility that  these waves exist in circular Poiseuille flow at finite 
Reynolds numbers. 

(iii) There are other flows to  which the same methods apply that have physical 
interest. One example is the suction boundary layer on a flat plate. Experimental 
evidence on transition in this flow will provide another means of testing the 
hypothesis that the existence and stability of finite-amplitude waves are related to  
transition and the occurrence of turbulence. 

(iv) The problem of finite-amplitude waves in boundary layers, wakes, jets and 
similar spatially developing flows are currently intractable by the present methods, 
which assume that the disturbances are spatially periodic. Various artifices have been 
employed in attempts to circumvent this problem. We wished to investigate the 
consequences of an approach (which seems to be due originally to  Prandtlt) in which 
the growth of the boundary layer etc. is suppressed by the addition of a fictitious 
force that makes the parallel flow with the appropriate velocity profile, say the 
Blasius profile or the Rayleigh profile, an exact solution of the Navier-Stokes 

t The idea is 'well-known', but we are unable to locate the precise reference. 
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equations. The problem is then formally well defined, and the methods can be applied 
and the results compared with experiment. However, the approach is intuitive rather 
than rational, and its value depends more on the insights that it provides into the 
sensitivity of the finite-amplitude waves to the undisturbed velocity profiles than on 
the detailed quantitative predictions. 

2. Plane Poiseuilleouette flow 
We consider two-dimensional flow of a viscous liquid in a channel of width 2h 

( - h < y < h). It is assumed that the flow is steady in a coordinate frame moving 
parallel to the walls with speed c and periodic in the streamwise direction with a 
wavelength L.  Thus we search for solutions of the Navier-Stokes equations in which 
the stream function Y, with u = Yu, v = - Yx, has the form 

(2 .1 )  Y = Y ( x - c t , y )  = Y(x-c t+L ,  y ) ,  

which satisfies (Yy-C)V~Yz-YxV~Yu-VV4Y = 0, 

where v is the kinematic viscosity. The boundary conditions are 

Y(z,  - h )  = 0, YJz, -h)  = 0, Y ( x , h )  = Q, Y u ( x , h )  = V ,  (2.3) 

where Q is the total flux through the channel and V is the velocity on the top wall. 
The bottom wall is supposed at rest. In  general, a pressure gradient will be necessary 
to drive the flow and the average kinematic pressure gradient, - P say, will be given 

where the overbar denotes an average over the wavelength L, and P is positive in 
Poiseuille flow. 

Three physical Reynolds numbers can be defined for this flow configuration. They 
are R --, 3Q R p = g 9  h3P R~=u'  Vh 

Q - 4v 

The constants are chosen so that the first two are equal to Uo h/v in the caae of uniform 
(i.e. independent of x) Poiseuille flow with centreline velocity Uo and stream function 

Poiseuille flow is obviously defined by V = 0, irrespective of whether the flow is 
uniform. On the other hand, non-uniform Couette flow is not unambiguously defined. 
For definiteness, we shall define it by the condition P = 0,  which seems physically 
to make most sense. The steady states of the system are therefore described by a 
surface in the four-dimensional space with coordinates (Rp,  RQ, R,, h /L) .  The 
intersection with the plane V = 0 gives Poiseuille flow, and the intersection with the 
plane P = 0 gives Couette flow. 

It is clear that, for given values of h/L,  any two of P ,  Q,  or V may be chosen 
independently. The uniform solution for Poiseuilldouette flow is 

3v 
P = g+ ( Q -  Vh) .  

10 
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P 

FIQURE 1. Configuration space for two-dimensional finite-amplitude waves in Poiseui l ldouet te  
flow at fixed h and v :  (1) laminar Poiseuille flow; (2) laminar Couette flow; (3) envelope of 
finite-arnplitude non-uniform waves in Poiseuille flow ; point B, rninimum-Reynolds-number 
bifurcation of Poiseuille flow, R, = 5772, a = 1.02; point L,, state of minimum Q, R ,  = 2493, 
a = 1.38; point L,, state of minimum P, R ,  = 2920, a = 1.33; (4) a family of solutions for constant 
a > 1.12 bifurcating from infinity or par t  of an isola; (5) speculative family of Poiseuille-couette 
solutions with nonlinear Couette flow at C. 

In this case the average centreline velocity is given by 

u ---av. 3Q 
O - 4h 

The relations (2.8) and (2.9) will fail of course when the flow is non-uniform (i.e. 
2-dependent). 

The object is to find non-uniform solutions of (2.2) subject to (2.3) and (2.4). It 
is important now to note that the problem as so far stated does not have isolated 
solutions and is degenerate, for, if Y ( z - c t , y )  is a solution, then so is Y ( z - c t + ~ , y )  
for arbitrary E. To obtain a family of isolated solutions and remove the degeneracy, 
some phase condition is required. This can be chosen in infinitely many ways. For 
convenience we used equations such as 

= 0. (2.10) awe, 0) 
ax 

It must also be noted that the uniform flow is still degenerate since the wave speed 
c is undetermined in this case. 
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The formal procedure goes as follows; see also figure 1, where the approach is 
sketched in the (Q,  V ,  P)-space. First, values of h, L and v are chosen so that 

a = 2nh/L (2.11) 

has a value such that a bifurcation point exists for uniform Poiseuille flow, i.e. there 
is a Reynolds number for which the profile is neutrally stable to disturbances of 
wavelength L. This is determined from the Orr-Sommerfeld equation and is a point 
in figure 1 lying in the plane V = 0 on the line given by (2.8). The family of non-uniform 
Poiseuille solutions emanating from this point with this value of a is found and 
followed by bifurcation and continuation procedures like those described by Keller 
(1977). I n  the first instance the continuation parameter is Q, and it is found that the 
bifurcation is subcritical, i.e. the locus of solutions in the (Q, P)-plane goes towards 
smaller Q ,  and that there exists a limit point past which the value of Q starts to 
increase. Continuation in the variable P was employed to get around the limit point, 
and continuation in the variable a, which is equivalent to changing L, is carried out 
to find families of solutions for other values of a, and to determine the envelope of 
the solution branches. This is shown in figure 1 by the solid curve (3), which starts 
at the point B corresponding to the minimum Reynolds number for transition in plane 
Poiscuille flow. The valucs of a vary along curve (3), increasing with the distance 
from B. 

The envelope curve has a vertical tangent at LQ where Q = QL. Non-uniform 
two-dimensional solutions do not exist if Q < QL, and this point gives the minimum 
Reynolds number, based on Q ,  for such solutions to exist. There is also a horizontal 
tangent at L, where P = PL, and solutions do not exist if P < PL. Hence there is an 
alternative minimum Reynolds number based on P .  These two Reynolds numbers 
are unequal, and moreover the wavelengths of the two solutions are different. The 
minimum values of RQ and R, are 2493 and 2920, and the values of a are 
approximately 1.38 and 1.33 respectively. (The Reynolds number of Herbert’s 
calculations appears to  be R,, and his value of 2935 for a minimum critical number 
with a = 1.32 agrees well when i t  is kept in mind that it is necessary to search in 
Rcynolds number and a. We obtained the minimum by fitting a paraboloid to data 
in the neighbourhood of the minimum.) The value of R ,  where P is a minimum is 
2678. The value of H, where Q is a minimum is 3218. This raises the possibility 
(Saffman 1983) that  the results of experiments or unsteady numerical simulations 
may depend upon the way the experiment is done or the calculation formulated. That 
is, an experiment or numerical simulation done with the flux kept constant may give 
different (unsteady) results from an experiment or simulation with the pressure 
gradient kept constant. This point was also made by Rozhdestvensky & Simakin 
(1984). 

Another interesting feature is that the wavelength for the disturbance for lowest 
KQ is not unstable for the Orr-Sommerfeld equation. For plane Poiseuille flow the 
maximum value of a for unstable disturbances is 1.1 1. Thus, for example, the branch 
of non-uniform solutions on which a = 1.32 does not intersect the laminar branch 
given by (2.8), and is therefore either an isola or goes off to  infinity, in which case 
there is a bifurcation from infinity. Attempts were made to determine which of these 
possibilities is the case. but resolution was lost as the Reynolds number increased. 
We did succeed. however, in continuing the lower part of the branch with a = 1.32 
u p  to H, = loo00 without difficulty (with N = 15 and M = 198, see §3), and the 
indications are that non-uniform waves with short wavelengths are bifurcations from 

10-2 
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FIQURE 2. Boundary of configuration spare for nonlinear waves in I ' o i ~ w u i l l r - ( ' o r r r t t e  flow. 

infinite Reynolds number. An illustration of a hypothetical family of solutions with 
constant a bifurcating from infinity is the dotted line (4) in figure 1 .  

To calculate waves in Poiseuille-couette flow and search for waves in Couette flow, 
the procedure was to increase V (with h and v fixed) for a non-uniform solution that 
allowed continuation in V, and then repeat the search as for Poiseuille flow to  find 
the minimum value of P, PL say, for the non-uniform solutions. This gives a curve 
in (P, V)-space that bounds the region where solutions exist. If PL goes negative it 
means that solutions exist which are non-uniform Couette flows. If, on the other hand, 
PL remains positive, then the implication would be that finite-amplitude non-uniform 
solutions do not exist in plane Couette flow. A sketch of preliminary results is shown 
in figure 2. The strange and unexpected result was found that PL increased as V 
increased, a t  least for values of R ,  < O.lR,. This implics that two-dimensional 
vortical states do not exist for Couette flow. However, the computations were 
expensive, and the results are not definitive because only a limited range of V was 
explored. The possibility that  the curve bends back as V increases further cannot be 
entirely ruled out, but the indications are that a search for three-dimensional states 
should be carried out. 

The amplitude of the non-uniform solutions was measured by their kinetic energy 

(2.12) 
per unit length h 

E = is ( G + g ) d y  = E , + E ,  
-h 

where E,, is the value for uniform flow : 

E, = - - H V + & V 2 h .  3Q2 
10h 

(2.13) 

3. Numerical methods 
Calculations have been done for both channel flow and semi-infinite boundary- 

layer-type geometries. The numerical method for the former is a special case of the 
latter, and we shall therefore outline the numerical procedure just for the unbounded 
case, where (2.2) or a closely similar equation is assumed to  hold for 0 < y < 00 and 
the wall is a no-slip streamline. The detailed implementation is straightforward but 
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z = ( M + t )  Az + + +  + +  

z = ( M + f )  A2 + + +  + +  

z = ( M + f )  Az + + +  + +  

. . . . .  
z=I 
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+ + +  + +  

Z = & k  + + +  + +  

2 = ; A z  + + +  + +  

2 = &  + + +  + +  

. . . . .  
z = O  

x = o  x = A x  x = L  

A x = L  A z = l  
2N+1’ M+1 
-- 

FIQURE 3. Computational mesh. 

extremely involved. The partial differential equation is discretized by employing 
difference approximations for derivatives in y and pseudospectral approximations for 
derivatives in x. The analytic stretching 

is applied to the truncated interval [0, y W ]  in order to provide more resolution near 
the wall. Equation (2.2) is rewritten in terms of x and z, and the difference 
approximations are made on a grid with uniform spacing in x and z. Figure 3 shows 
thc grid used for the computations. The computational points are at 

(3 .2)  

L 
x t= i6x ,  i = O , l ,  ..., 2N, 6x=- 2N+1’  

1 
M +  1‘ 

z j+t=  ( j + a ) 6 ~ ,  j = - l , O  ,..., M + 2 ,  6 ~ = -  

Centred second-order-accurate approximations are made for the z-derivatives of Y 
at the points j + ?j for j = 1, . . . , M .  The first and third and fourth derivatives involve 
five points. The x-derivatives are approximated using the pseudospectral method. For 
fixed j the values of Y at i = 0, 1 ,  ..., 2N are interpolated by a trigonometric 
polynomial of degree N. The result is differentiated and evaluated at the grid points 
to yield an approximation for the x-derivatives of Y. 

The no-slip boundary condition yields the boundary conditions 

Yiyi.-;= Yi,t=O, i = O , 1 , 2  ,..., 2N. (3.3) 
Satisfying the discretized form of the differential equation at the grid points 
i = 0, ..., 2N, j = 1, ..., M then gives ( 2 N + 1 )  M equations. To obtain further 
equations i t  is necessary to match to the free stream. 
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For large y (2 .2)  reduces to the limiting form 

vv4Y-(u,-c)v~Yz = 0. (3.4) 

where U ,  is the constant free-stream velocity. %paratring variables, it is sccn that, 
the y-dependence of the nth harmonic with wavenumber nu is 

(3.5) Y, = A ,  eon Y + B ,  e-an Y + C ,  e p n  + Dpn e-pn Y 

for n = 0, where 
i a ,  i 

a, = na, p, = [a:+- n ( ~ , - c ) ]  , 

(3.6) 

(3.7) 

and /3, is defined to have positive real part. Boundary conditions a t  y = y, that 
ensure that the solution matches to the decaying disturbance in the free strcam are 

n = 1 , 2  ,..., N, 
(D2-a:) (D+/3,) Y, = 0, 

(D2--82,) (D+a,) yn = 0, 

D2Yo = D3Y0 = 0, (3.9) 

where D E d/dy. Remembering that Y, are complex for n + 0, these give 4N+ 2 real 
equations which are linear in the values of qj for i = 1, . . . , N and j = M - a, M + a, 
M + g ,  M + g ,  when the z-derivatives are centred on z = 1. It is to be noted that B, 
is not put equal to U,, and we allow for a change in the free-stream velocity. This 
is a subtle point which we shall discuss further a t  a later stage. The value of A, 
corresponds to a change in the displacement thickness of the boundary layer. 

A t  this stage the number of equations equals the number of unknown values of 
Y at the mesh points. We need one more equation because the wave speed is also 
unknown. This is provided by a phase condition, which also removes the spatial 
degeneracy of the formulation; a convenient one is to take the first derivative of Y 
to be zero for i = 0 and somej between 1 and M. The amplitude of the wave is not 
specified, since this comes out as a result of the calculation. For the case of flow in 
a channel, the boundary condition on the top wall specifies the values of Y for j = M 
and M +  1, and the unknowns are the values for 1 < j < M -  1 and the wave speed. 
The equation at the grid points and the phase condition gives the appropriate number 
of equations. The system of equations was solved by Newton iteration, with the first 
guess given either by continuation from a converged solution or from a solution of 
the Ordommerfeld equation when the wave amplitude is small and the branch is 
near the bifurcation from the uniform flow. 

4. Asymptotic suction profile 

u = ~ ( 1  -e-g/a), w = - w = const., 8 = -L (4.1) 
The flow field 

W 
is an exact solution of the Navier-Stokes equations and describes a constant-thickness 
boundary layer over a porous plate that is sucking in fluid with a constant velocity W. 
Finite-amplitude waves on this flow can be calculated as described in $3. There are 
two differences. First, there is an extra term vV2YY in the equation (2.2) for the 
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FIGURE 4. Asymptotic suction profile. Energy of disturbance normalized on 4V8 versus Reynolds 
number IJ8/u.  Iloundary-layer thickness 8 = v / W .  Results are for a = 0.16, N = 17, M = 149, 
!la = 10, = 5. 

stream function. Secondly, the boundary condition (3.9) is changed. Equation (3.6) 
is replaced by 

We require B, = U and C, = 0, which is achieved by imposing 

I Y , = A o + B o y + C o y 2 + D , e - ~ ~ b .  (4.2) 

In this case the free-stream velocity is fixed. The counting is then as described in $3. 
In figure 4 we show results of calculations of the wave amplitude, measured by its 

cxcess energy E', plotted against Reynolds number defined by 

for a = 0.16, where a = 2zS/L. In  this calculation S and L were kept constant and 
v was allowed to vary. The critical Reynolds number for instability of the laminar 
flow is about 55000 at this value of a (Hocking 1975; Drazin & Reid 1981). The data 
in the figure were obtained using N = 17, M = 149, yco = 10 and the coordinate 
stretching parameter B = 5.  The excess energy is normalized by iu28. 

It is remarkable that the neutral curve drops so quickly to values of a few thousand 
from the large value for linear instability of the laminar profile. At a relative distur- 
bance energy of 0.1 yo the Reynolds number for existence of a steady non-uniform 
shear wave is 3000. According to the speculation by Saffman (1983), this would imply 
that the asymptotic suction boundary layer is unstable to very weak disturbances 
at Reynolds numbers an order of magnitude less than that predicted by linear 
stability theory, which is consistent with the general report that suction is not an 
cffectivc way of laminarizing turbulent boundary layers, although i t  can delay 
transition. 
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5. Boundary layers 
The results presented in $$2 and 4 are numerical approximations to  exact solutions 

of the Navier-fftokes equations. It is natural to consider whether finite-amplitude 
shear waves exist in boundary layers on plates or bluff bodies. We arc now faced with 
the fundamental difficulty that a boundary laycr is only in cxocptional caws (such 
as the asymptotic suction profile) independent of the streamwise coordinate x, say, 
because it is growing by the diffusion of vorticity, and the assumption of spatial 
periodicity (2.1) is not valid. In  fact, the boundary layer or flow region must be 
treated as a whole, and both upstream and downstream boundary conditions need 
to be supplied for the elliptic equation (2.2). This is a t  present an insoluble problem, 
made even more difficult by the fact that  the waves themselves must affect the 
boundary conditions, so that a boundary condition used in the absence of waves may 
be unreasonable when the waves are present. 

I n  order to investigate finite-amplitude waves in boundary layers, ad hoc assump- 
tions have to be made or physically unrealistic cases are studied. It is not our purpose 
here to consider the merits and demerits of the various approaches; rather we shall 
present results of calculations in which the boundary layer is modified by an artificc 
so that the flow field becomes amenable to the present technique. The extent to  which 
the results bear on properties of real boundary layers is a matter for conjecture, but 
a t  least the approach has the merit of giving a well-posed problem, so it is clear exactly 
what problem is solved. 

The artifice is to  add a fictitious force in the x-direction so that the approximately 
unidirectional (or steady) velocity profile is an exact unidirectional steady solution 
of the Navier-Stokes equations on which a spatially periodic, steadily propagating 
wave can be superposed. We shall deal with two cases: the Blasius boundary layer 
and the Rayleigh profile. I n  the former the velocity profile given by the boundary-layer 

where f”+yy = 0. 

We replace the velocity field (5.1) by 

u= u, f(t), v = o ,  (5.3) 

which is an exact solution of the Navier-Stokes equations if we add a fictitious force 
- vU,  f”(y/S,)/G~ to the 2-component of the momentum equation. Then, instead of 
(2.2), we calculate non-uniform solutions of 

Ku U ,  f nu 
(Yu-C)V2Yx- YxV?Pu-UV4Y = - 

4 (5.4) 

Notice the variable K multiplying the force. The reason for its presence is that the 
force is not arbitrary, and there is no reason why the force can remain the same if 
non-uniform waves are present and all other parameters, e.g. the free-stream velocity 
or Reynolds number, are unaltered. The profile (5.3) solves (5.4) when K = 1, but 
when Y depends upon x we must allow K to change (or alter the profile in some other 
way). Referring back to (3.9) and the discussion of the way in which the boundary 
conditions at infinity are imposed, i t  was pointed out there that the counting did not 
allow for a specification of the free-stream velocity. The extra term on the right-hand 
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FIGURE 5. Results for unidirectional flow with Blasius profile. Energy of disturbance normalized 
on &Jlz a0 vt.rwN Reynolds number U ,  So/v. Laminar bifurcation occurs for Re = 303. Solid line 
is for N = 15. Dashed line shows spurious bendback with N = 7 caused by truncation error. M = 99, 
ym = 15, a = 0.17, L = d 0 / a .  = 2.5. 

side of (5.4) does not affect the number of equations, but by introducing an extra 
variable K, which gives the magnitude of the fictitious force, we can now impose an 
extra boundary condition 

B, = U ,  (5.5) 

and use this equation to determine K. 
We now have a well-posed mathematical problem, and we proceed as before to 

calculate solutions periodic in x with wavelength L. There is a choice of parameters 
to vary along the solution branch. The simplest conceptually is to keep L, U ,  and 
8, fixed at some values and vary v .  

A Reynolds number can be defined as 

Re = U ,  S/v .  (5.6) 

The unidirectional laminar solution that satisfies (5.4) with K = 1 allows bifurcation 
into non-uniform solutions at a value of v given by the critical Reynolds number found 
from the Orr-Sommerfeld equation with the Blasius profile. The eigenfunction 
provides the tangent to the bifurcated branch which is followed in the usual way by 
continuing in v. Some results are shown in figure 5. 

The difficulty of handling the spatial growth of the boundary layer has led some 
investigators to consider the problem of the unsteady growing boundary layer on an 
infinite flat plate set into motion. When the motion is a constant velocity started 
impulsively from rest the velocity is referred to as the Rayleigh profile and is the 
unsteady one thought to correspond most closely to the Blasius profile on the 
semi-infinite flat plate on the basis of the analogy between t and x / U , .  Although 
spatially periodic solutions can now be assumed, steady solutions do not exist and 
Yeparation of variables with respect to time is not allowed. The same artifice used 
above can be used for the Rayleigh profile, and steady propagating solutions can be 
found if the laminar profile is taken to be given by 

U = U ,  erfc (y2/@) (5.7) 
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FIGURE 6. Results for unidirectional flow with Rayleigh profile. Normalized energy of disturbance 
versus Reynolds number for a = 0.17 and 0.21. Laminar bifurcation occurs for t l o  = 1740 and 1483 
respectively. M = 149, ym = 12.5, @ =  4. Note that  for a = 0.17 the bifurcation is initially 
supercritical but rapidly becomes subcritical. 

with the corresponding force field. The calculation proceeds as for the Blasius layer 
with v varying and L, U ,  and S,, kept constant. A Reynolds number can again be 
defined by (5.6). Results are shown in figure 6. 

It will be seen that there is a considerable difference between the Blasius profile 
and the Rayleigh profile. In the former case, the bifurcation is supercritical and the 
steady nonlinear waves corresponding to increasing xo or Reynolds number. (Earlier 
results presented by Saffman (1983) in which the curve bent back to smaller Reynolds 
numbers and which were made the basis of a speculation that finite-amplitude 
subcritical transition was possible are now found to be due to truncation error.) On 
the other hand, the behaviour of the Rayleigh profile depends upon the value of a. 
At the lowest Reynolds number for instability the bifurcation is subcritical and bends 
back to supercritical behaviour as the amplitude increases, as for Poiseuille flow. 
However, for bifurcation at larger Reynolds numbers, corresponding to a different 
value of a, the bifurcation is initially supercritical, but then a t  a very small amplitude 
turns back to subcritical behaviour, and then becomes supercritical again as the 
amplitude increases. 

The main conclusion to be drawn from these results is unfortunately rather 
negative. It appears that there is a considerable sensitivity to the shape of the laminar 
profile, and that therefore results from any ad hoe model of the boundary layer that 
does not accurately take account of the growth at the Reynolds numbers for which 
transition occurs (and this is also the case for the so-called rational asymptotic models 
formally valid in the limit of Re-too) are of doubtful significance. 

6. Perturbation expansion 
It is always desirable to check the accuracy of large-scale numerical calculations 

if possible, and in the present case some check can be performed by evaluating 
independently the properties of the nonlinear waves in the neighbourhood of the 
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bifurcation point by carrying out perturbation analysis. We let E be a measure of the 
amplitude of the disturbance and take expansions of the form 

Y(z, y) = Yoo + E( Yll eiaZ + Y :l edaZ) 

+e2(K2 eZiaz+ Yoo+ Yz2 e-2ia2)+~3(51 eiaZ+ Y:l e-iaz)+ ... , (6.1) 

where Ymn is the coefficient of the nth harmonic at order m and is a function of y. 
In the perturbation expansion we followed the numerical approach and kept So, L 
and U ,  constant and varied v. However, we now keep K constant as well and allow 
a perturbation in the free-stream velocity for the Blasius and Rayleigh profiles. Then, 
together with (6.1), we have an expansion 

I c = C0+E2C2+ ... , 
v = V 0 + € 2 V O +  ... . 

The suffix 0 refers to the values at the bifurcation point, which are given by the 
requirement that the Orr-Sommerfeld equation has a real eigenvalue co. Substitution 
into (5.4) and equating powers of E and exp (imc) gives a set of linear inhomogeneous 
ordinary differential equations for the Ymn. The linear operator is singular for n = 1 ,  
and thc Fredholm alternative applied to the right-hand side then gives consistency 
c*ontlitjions to det,crmine the corrections to c and u. In particular, the Fredholm- 
alternative condition applied to the equation for !P31 (that the right-hand side be 
orthogonal to the solution of the adjoint operator) gives one complex equation and 
hence two real equations, which determine c2 and v2. The details are straightforward 
in principle and will not be described. However, we should like to emphasize that 
a considerable amount of work and considerable care was needed to solve the ordinary 
differential equations and evaluate the integrals over an infinite region with sufficient 
accuracy. The discretization of the y-variable and the matching to asymptotic 
boundary conditions was basically similar to the method described in $3 for the 
partial differential equation. The extra flux Q’ in the boundary layer (i.e. change in 
displacvment thickness multiplied by free-stream velocity) and extra velocity Ul, are 
given by the asymptotic behaviour of Y20: 

Y - Q’+ CJL y as y+m. (6.3) 

Comparisons of the results obtained from the perturbation analysis and the solution 
of the full two-dimensional system are shown in tables 1-3 and lend support to the 
belief that the numerical approach is correct. 

7. Conclusions 
Apart from the results for the uniform suction profile, the calculations of 

two-dimensional steady finite-amplitude waves or vortical states in viscous shear flow 
reported in this paper lead unfortunately to somewhat negative conclusions about 
the relevance of two-dimensional calculations and the value of approximations made 
to handle the streamwise dependence of spatially growing flows. It appears that the 
three-dimensionality of real turbulent flows must be incorporated into the laminar 
or vortical states that are used to simulate turbulent motion if the physics is to be 
propcrly modelled. This, of course, is not a new idea, and i t  was perhaps unreasonably 
optimistic to hope that the study of two-dimensional vortical states would elucidate 
turbulent phenomena. 

On the other hand, i t  appears that genuinely two-dimensional motions at  large 
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Numerical values 
Perturbation theory 

€2 0 0.719 (-5) 0.123 (-3) 
( v  - vo)/e2 -0.118 -0.1 1 1  -0.  lo!) 
(f - C 0 ) / E 2  4.06 4.05 4.08 
Q ’ / 8  3.93 3.83 3.86 
U & / € 2  6.0 5.98 6.02 
E ; , p  28.0 27.90 26.8 

TABLE 1 .  Comparison of perturbation results and numerical calculations : Hlasius protile. Nirtneric*x 
employed: M = 9 9 , B = 3 , y x =  1 5 . F o r ~ ~ + O , N = 5 . H e . , = : j 0 3 , ~ = 0 . 1 7 .  

Numerical values 
Perturbation theory 

€2 0 0.977 (-5) 0.763 (-3) 
( v -  vo) l&2  -0.064 -0.059 -0.045 
( C - C o ) / E 2  12.8 13.0 14.0 
&‘I€’ 2.04 1.86 1.93 
u p  7.95 7.94 8.15 
E;ZP 174.7 173.0 160.5 

TABLE 2. Comparison of perturbation results and numerical calculations: Rayleigh profile. 
Numerics employed M = 149, B = 4, ym = 12.5. For e2 8 0, N = 5. These values are for initially 
supercritical bifurcation at Reo = 1740, a = 0.17. 

Perturbation theory Numerical values 

€2 0 O.l83(-4) 
( v -  V O ) I E 2  0.296 0.30 
(C - -co) /62 533 530 
Q ’ / E 2  -21.9 -21.5 
E;,/€2 1484 I430 

TABLE 3. Comparison of perturbation resultsand numerical calculations: asymptotic suction profile. 
Numerics employed M = 149, B = 5, ym = 10. For 8 $. 0, N = 5. Re, = 54700 for a = 0.16. 

Reynolds number may be within experimental reach (e.g. Couder, Basdevant & 
Thome 1984), in which case i t  may be possible to test the predictions made by 
two-dimensional calculations against experiment. 

The sensitivity of the boundary -layer model to the assumed profile is discouraging, 
as it implies that  a better understanding of the boundary conditions appropriate to 
spatially developing flow is needed, and at present little progress appears to have been 
made with this difficult problem. 

This work was supported by NASA Lewis (NAG3-179), the Department of Energy, 
Office of Basic Energy Sciences (DE-AT03-76ER72012), and the Office of Naval 
Research (N00014-85-K-0205). 



Finite-amplitude steady waues in shear jlows 295 

R E F E R E N C E S  

COUDER, Y., BASDEVANT, C. & THOME, H. 1984 Solitary vortex couples in two-dimensional wakes. 

DRAZIN, P. G. & REID, W. H. 1981 Hydrodynamic Stability. Cambridge University Press. 
GOLDSHTIK, M. A., LIFSHITS, A. M. & SHTERN, V. N. 1983 The transition Reynolds number for 

HERBERT, T. 1978 Die neutrale Flache der ebenen Poiseuille-Stromung. Habilitationsschrift, 

HERBERT, T. 1981 Stability of plane Poiseuille flow - theory and experiment. Fluid Dyn. Trans. 

HOCKING, L. M. 1975 Non-linear instability of the asymptotic suction velocity profile. &. J .  Mech. 

KELLER, H. B. 1977 Numerical solution of bifurcation and nonlinear eigenvalue problems. In 

NOETHER, F. 1921 Daa Turbulenzproblem. 2. angew. Math. Mech. 1, 125-138, 218-219. 
ORSZAG, S. A. & PATERA, A. T. 1983 Secondary instability of wall-bounded shear flows. J. Fluid 

Mech. 128, 347-385. 
ROZHDESTVENSKY, B. L. & SIMAKIN, I. N. 1984 Secondary flow in a plane channel: their 

relationship and comparison with turbulent flows. J. Fluid Mech. 147, 261-289. 
SAFFMAN, P. G. 1983 Vortices, stability and turbulence. In  Proc. 4th Intl Conf. Physico-Chemical 

Hydrodynarnim (ed. R. Pfeffer); Ann. N Y  A d .  Sci. 404, 12-24. 
SMITH, F. T. & BODONYI, R. J. 1982 Amplitude dependent neutral modes in the Hagen-Poiseuille 

flow through a circular pipe. Prw. R. Soc. Lond. A 384,463489. 

C.  r .  A d .  Sci., Paris 299, 89-93. 

a plane channel. Dokl. Akad. Nauk SSSR 273, 75-79. 

Universitat Stuttgart. 

11, 77-126. 

Appl. M a t h  28, 341-353. 

Applications of Bifurcation Theory (ed. P. H. Rabinowitz), p. 359. Academic. 


